Dieudonné Modules and the Classification of Formal Groups

Graduate Homotopy Theory Seminar, Spring 2023 Gabrielle Li

Abstract

A Dieudonné module is a module over the ring of Witt vectors over some field k generated by two endomorphisms Frobeius F and Verschiebung V. The category of formal groups over a perfect field k is equivalent to the category of finitely generated Dieudonné module under some mild condition, so the classification of formal groups reduces to the classification of such modules. In this talk, I will introduce the construction of Dieudonné modules and compute some Dieudonné modules associated with various formal group.

1 Motivation

There is a functor

 $DM: \{\text{Formal groups over a perfect group } k\} \to \{\text{Finitely generated free } W_k\text{-modules with } F, V\}$

This is an equivalence of category, so the classification of formal groups reduces to the classification of W_k module. I will also introduce the Honda formal group and compute the associated Dieudonné module, which
helps us compute the Morava stablizer group.

2 Preliminaries

Definition 1. (Adic R-algebra) For a ring R, then an adic R-algebra A is an augmented R-algebra with augmentation

$$A \xrightarrow{\epsilon} R$$

whose augmentation ideal $ker(\epsilon)$ is nilpotent. We write $\mathcal{J}(A)$ for the augmentation ideal and denote the category of adic R-algebra as $Adic_R$.

Definition 2. (Formal affine plane) A formal affine plane of dimension n over R is the functor

$$\hat{\mathbb{A}}_{R}^{n}: \mathrm{Adic}_{R} \to \mathrm{pointed\ sets}$$

$$A \to \text{Hom}_{R}^{cts}(R[[x_1, x_2, ..., x_n]], A) = \mathcal{J}(A)^n$$

The category FV_R of formal varieties over R is the ctaegory whose objects are functors

$$V: \mathrm{Adic}_R \to \mathrm{pointed}$$
 sets

isomorphic to $\hat{\mathbb{A}}_R^n$ for some n (the dimension of V) and morphisms are natural transformations. The isomorphism

$$V \xrightarrow{\cong} \hat{\mathbb{A}}_R^n$$

is called a system of parameters. The isomorphism

$$\hat{\mathbb{A}}_R^n \xrightarrow{\cong} V$$

is called a coordinate.

Definition 3. (Formal group, formal group law) A formal group over R is a group object G in the category of formal varieties over R. A formal group law over R is a formal group together with a system of parameters, i.e. an isomorphism

$$G \xrightarrow{\cong} \hat{\mathbb{A}}_R^n$$

of set-valued functors.

Now we introduce two basic examples of formal groups.

Example 4. The additive formal group $\hat{\mathbb{G}}_a$ is the functor

$$\hat{\mathbb{G}}_a(A) = \mathcal{J}(A)$$

and a coordinate is the identity map

$$\mathcal{J}(A) \to \mathcal{J}(A)$$
.

The multiplicative formal group $\hat{\mathbb{G}}_m$ is the functor

$$\hat{\mathbb{G}}_m(A) = (1 + \mathcal{J}(A))^{\times}$$

and a possible coordinate is

$$a \to 1 - a$$
.

3 Witticism

Definition 5. (Witt scheme) Let \mathbb{A}^n be the scheme

$$\mathbb{A}^n := \text{Spec } \mathbb{Z}[x_0, x_1, ..., x_{n-1}].$$

The Witt scheme $\mathbb{W}_{p,n}$ is a ring scheme whose underlying scheme is \mathbb{A}^n , with a morphism

$$\mathbb{W}_{p,n} \xrightarrow{w} \mathbb{A}^n$$

which is given on the coordinates by the Witt polynomial

$$w_0(x_0, ... x_{n-1}) = x_0$$

$$w_1(x_0, ... x_{n-1}) = x_0^p + p x_1$$

$$w_2(x_0, ... x_{n-1}) = x_0^{p^2} + p x_1^p + p^2 x_2$$

$$w_j(x_0, ... x_{n-1}) = \sum_{d=0}^{j} p^d x_d^{p^{j-d}}$$

We take

$$\mathbb{W}_p(A) = \varprojlim \mathbb{W}_{p,n}(A).$$

We can generalize this notion to an arbitrary field k and get a $\mathbb{W}_p k$ by the following pullback diagram

When $k = \mathbb{F}_p^n$, We can think of $\mathbb{W}_p k$ with respect to k as the p-adic interger with respect to \mathbb{F}_p

Definition 6. (Frobenius, Verschiebung) For an R-valued point $(a_0, a_1, ...)$ of \mathbb{W}_p (= homomorphism from $\mathbb{Z}[x_0, ...]$ to R), then the components of its image under w

$$(w_0(a), w_1(a), ...)$$

are called the ghost components, and the ghost components completely characterize the point. To be defined in terms of the original Witt components,

$$V(x_0, x_1, ...) = (0, x_0, x_1, ...)$$

ghost components, the operator V on \mathbb{W}_p is given by

$$V^{w}(0, w_0(x_0, x_1, ...), w_1(x_0, x_1, ...), ...) = (0, pw_0, pw_1, ...).$$

It's difficult to write down what the operator F does on the Witt component, but with respect to the ghost components, we get

$$F^{w}(w_0, w_1, w_2...) = (w_1, w_2...)$$

Definition 7. (Witt formal group) We can make the Witt scheme $\mathbb{W}_{n,p}$ into a formal group isomorphic as a formal variety to $\hat{\mathbb{A}}_{R}^{n}$ by completion at the origin. The *p*-typical Witt formal group is defined

$$\hat{\mathbb{W}}_p(A) = \varprojlim \hat{\mathbb{W}}_{p,n}(A)$$

Thus, a point in $\hat{\mathbb{W}}_p(A)$ looks like $(a_1,...,a_n)$ with $a_i \in \mathcal{J}(A)$ and there exists $N \in \mathbb{N}$ such that $a_i = 0$ for i > N. There is also the global Witt formal group $\hat{\mathbb{W}}(A)$ that is defined similarly, and later we will see that it plays an important role in the curve group. Analogous to the p-typical Witt vectors, We have operator V_r, F_r (with grading r) that act on the global Witt vectors. This is rather simple with respect to the ghost component:

$$V_r^w(w_1, w_2...) = (0, 0, ..., 0, w_1, w_2...)$$

 $F_r^w(w_1, w_2...) = (w_r, w_{2r}...).$

4 Construction

Definition 8. (Dieudonné module) Suppose that k is a perfect field of characteristic p and $\varphi: a \to a^p$ is the Frobenius isomorphism. A Dieudonné module over k is a $\mathbb{W}_p k$ -module M equipped with operators F and V which are $\mathbb{W}_p k$ -linear maps

$$F:\varphi^*M\to M$$

$$V: M \to \varphi^* M$$

which satisfy

$$FV = p = VF$$
.

Moreover, M is required to be uniform and reduced with respect to V, i.e.

$$M \cong \lim_{r \to \infty} M/V^r M, M/VM \cong V^k M/V^{k+1} M \ (k > 0).$$

Theorem 9. Suppose that k is a perfect field of characteristic p > 0. There is a functor DM inducing an equivalence of categories

$$DM: \mathrm{FG}_k \xrightarrow{\cong} Dieudonn\acute{e} \ modules \ over \ k$$

We introduce a few tools before we can state what the functor DM does to a formal group.

Definition 10. (Curve functor, F,V on curve) For a formal group G, the group of curves in G is the group

$$C(G) = C_R(G) := \operatorname{Hom}_{\mathrm{FV}}(\hat{\mathbb{A}}_R^1, G).$$

There are three basic types of endomorphisms of curves: homotheties, Verschiebung, and Frobenius. Given a curve

$$\gamma: \hat{\mathbb{A}}^1_R \to G$$

we have new curves by

$$[a](\gamma): \hat{\mathbb{A}}_R^1 \xrightarrow{a} \hat{\mathbb{A}}_R^1 \xrightarrow{\gamma} G$$

$$V_r(\gamma): \hat{\mathbb{A}}_R^1 \xrightarrow{t \to t^r} \hat{\mathbb{A}}_R^1 \xrightarrow{\gamma} G.$$

The action of Frobenius is more complicated, we have

$$F_n \gamma(t) = \prod_{i=0}^{n-1} (1 - \zeta^i t^{1/n})$$

where ζ is the *n*-th root of unity. Recall that F_r, V_r also acts on the global Witt formal group, and we will see the relationship shortly.

Definition 11. (p-typical curve) A curve γ is called p-typical if $F_n \gamma = 0$ when n is not a power of p.

Theorem 12. (Global Witt formal group represents curves) Let $\hat{\mathbb{W}}$ be the Witt formal group, and γ_1 be the curve

$$\gamma_1: \hat{\mathbb{A}}^1 \to \hat{\mathbb{W}}$$

given by $t \to (t,0,0,...)$. For a formal group G over the ring R, precomposing with γ_1 induces an isomorphism

$$\operatorname{Hom}_{\operatorname{FG}_R}[\hat{\mathbb{W}},G] \cong CG.$$

Under this isomorphism, the operator F_r on curves corresponds to the operator V_r on the Witt formal group. When r = 0 in R, then the operator V_r on curves corresponds to F_r on the Witt formal group.

We have
$$DM(G) = \{ \gamma : \gamma \in CG : F_n \gamma = 0, n \neq p^m \} = \operatorname{Hom}_{\operatorname{FG}_R}[\hat{\mathbb{W}}_p, G] \subset \operatorname{Hom}_{\operatorname{FG}_R}[\hat{\mathbb{W}}, G] = CG.$$

5 Examples

Example 13. (Additive formal group) For an adic algebra A, the multiplicative group is

$$\hat{\mathbb{G}}_a(A) = \mathcal{J}(A)$$

with parameter

$$\hat{\mathbb{A}}^1 \xrightarrow{\gamma} \hat{\mathbb{G}}_a$$

$$a \rightarrow a$$
.

We have

$$F_n \gamma(t) = \sum_{j=0}^{n-1} t^{1/n} \zeta^j = 0$$

through direct computation, so the Frobenius F_n vanishes on γ for any n > 1 and $V\gamma(t) = t^n$. For a field k with characteristic p, the Dieudonné module of the additive group is

$$\prod_{n\geq 0} V^n k$$

where the Frobenius acts trivially, and the Witt vectors act through the projection $\mathbb{W}_p k \to k$.

Example 14. (Multiplicative formal group) Recall that for an adic algebra A, the multiplicative group is

$$\hat{\mathbb{G}}_m(A) = (1 + \mathcal{J}(A))^{\times}$$

with parameter

$$\hat{\mathbb{A}}^1 \xrightarrow{\gamma} \hat{\mathbb{G}}_m$$

$$a \to 1 - a$$
.

We get

$$\gamma(r) +_{\hat{\mathbb{G}}_m} \gamma(s) = (1-s)(1-t) = \gamma(s+t-st)$$

and

$$F_n \gamma(t) = \prod_{i=0}^{n-1} (1 - \zeta^i t^{1/n}) = \gamma(t)$$

through direct computation. We can produce a p-typical curve $\tilde{\gamma}$ and show that $F\tilde{\gamma} = \tilde{\gamma}$. Since

$$V\tilde{\gamma} = VF\tilde{\gamma} = p\tilde{\gamma}.$$

Therefore, we know that for a $\mathbb{Z}_{(p)}$ -algebra R, the Dieudonné module for $\hat{\mathbb{G}}_m$ is free of rank 1 over $\mathbb{W}_p R$, generated by the curve $\tilde{\gamma}$ with F and V acting by

$$F\tilde{\gamma} = \tilde{\gamma}, V\tilde{\gamma} = p\tilde{\gamma}.$$

Example 15. (Formal group of each height over a perfect field k) We will describe a Dieudonné module of height h for each finite positive height h corresponding to a one-dimensional formal group of height h. We are able to find a good basis for a Dieudonné module of heigh h:

$$\gamma, V\gamma, ..., V^{h-1}\gamma$$

where γ is a p-typical curve. For $i \geq 1$, we have $FV^i \gamma = pV^{h-1} \gamma$, so the remaining indeterminacy is $F\gamma$. We can choose $F\gamma = V^{h-1}\gamma$ that satisfies the relations of F, V, so we get

$$V^h \gamma = VV^{j-1} \gamma = VF \gamma = p\gamma$$

so we can write

$$V = \begin{pmatrix} & p \\ I & \end{pmatrix}, F = \begin{pmatrix} & pI \\ 1 & \end{pmatrix}$$

Note that when k is algebraically closed, we can prove that this is the unique formal group law of height k over k up to isomorphism. This is consistent with what we already know about formal group law.

Example 16. (Endomorphism) We start with the formal group Γ with basis

$$\gamma, V\gamma, ..., V^{h-1}\gamma$$

and

$$F\gamma = V^{h-1}\gamma, V^h\gamma = p\gamma.$$

Let k be a finite field and let Γ' be an arbitrary formal group over k. We know there is an isomorphism

$$\phi: \Gamma \cong \Gamma'$$

over \bar{k} . Suppose that $g \in \operatorname{Gal}(\bar{k}/k)$, we know g fixes k, so

$$\Gamma = q^*\Gamma, \Gamma' = q^*\Gamma'$$

We want ϕ to be an isomorphism over k, which means k has to be invariant under g, so $\phi = g^*\phi$. For any g, we can associate

$$A_g := g^* \phi \circ \phi^{-1} \in \operatorname{Aut} \Gamma$$

and we can check that this construction is a homomorphism from $\operatorname{Gal}(\bar{k}/k)$ to $\operatorname{Aut}\Gamma$. There is an algebraic result that states that $\Gamma \cong \Gamma'$ over k if and only if $A_g = g^*m \circ m^{-1}$, so we can classify formal groups of height h over k by computing. $H^1(\operatorname{Gal}(\hat{k}/k), \operatorname{Aut}\Gamma)$. Therefore, by computing the automorphism group of the Dieudonné modules of Γ and how $\operatorname{Gal}(\bar{k}/k)$ acts on it, we can classify formal groups over heigh h over a finite field k. Moreover, this helps us compute the Morava stablizer group.