Galois Extensions in Stable Homotopy Theory

Gabrielle Li

UIUC Graduate Student Homotopy Theory Seminar, Spring 2024

April 6, 2024

Outline

- Definition
- Examples
 - Eilenberg–MacLane spectra
 - Topological K-theory
 - Hopkins-Devinatz
 - K(1)-local case
 - Cyclotomic extension
- Cyclotomic completeness

Definitions

Let $f: R \to T$ be a map of commutative rings which makes T a commutative R-algebra. Let G a finite group acting on T from the left through the R-algebra homomorphism. Let

$$i:R\to T^G$$

be the inclusion of fixed ring, and let

$$h: T \otimes_R T \to \prod_G T$$

be the commutative ring homomorphism that assigns

$$t_1 \otimes t_2 \mapsto \{g \mapsto t_1 \cdot g(t_2)\}$$

Definition (Galois extension of commutative rings)

We say $f: R \to T$ is a G-Galois extension if the two maps i, h are isomorphisms.

Definitions

Definition (Galois extension of commutative ring spectra)

Let G be a finite group. A map $A \rightarrow B$ of commutative ring spectra is a G-Galois extension if the following conditions hold:

- $oldsymbol{0}$ G acts on B through A-algebra maps.
- ② The natural map $i: A \rightarrow B^{hG}$ is a weak equivalence.
- **3** There is a weak equivalence $h: B \wedge_A B \cong \prod_G B$.

The Galois extension is E-local if i, h are E-equivalences.

Definition (Faithful Galois extension)

We say a Galois extension $f:A\to B$ is faithful if B is a faithful A-module. In other words, for any A-module M, we have $B\wedge_A M\cong *$ if and only if $B\cong *$.

Definition

Proposition

Let G be a finite group and B be a normal subgroup of G. If $A \to B$ is a G-Galois extension, then $A \to B^{hN}$ is a G/N-Galois extension.

Examples: Eilenberg-MacLane spectra

Proposition

Let $f:R\to T$ be map of commutative rings with a finite group G acting on T through R-algebra homomorphisms. Then $f:R\to T$ is a G-Galois extension of commutative rings if and only if the induced map $fH:HR\to HT$ is a G-Galois extension of commutative ring spectra.

Proof. Use homotopy fixed point spectral sequence

$$E_2^{p,q} = H^p(G, \pi_q(HT)) \Rightarrow \pi_{q-p}(HT^{h\mathbb{Z}/2})$$

Examples: Topological K-Theory

Proposition

The complexification map $c: KO \to KU$ is a faithful \mathbb{Z} /2-Galois extension.

Proof. Use homotopy fixed point spectral sequence

$$E_2^{p,q} = H^p(\mathbb{Z}/2, \pi_q(KU)) \Rightarrow \pi_{q-p}(KU^{h\mathbb{Z}/2})$$

Pro-Galois Extension

Definition (Pro-finite Galois extension)

Let A be a E-local ring spectrum and a directed system of E-local G_{α} -Galois extension $A \to B_{\alpha}$. We also suppose that $A \to B_{\alpha}$ is a sub-Galois extension of $A \to B_{\beta}$ is a sub-Galois extension, i. e. there is a chosen surjection $G_{\beta} \to G_{\alpha}$ with kernel $K_{\alpha\beta}$ such that $B_{\alpha} \to B_{\beta}^{hK_{\alpha\beta}}$ is a weak equivalence. Let $G = \lim_{\alpha} G_{\alpha}$ and $B = \operatorname{colim}_{\alpha} B_{\alpha}$, then we call $A \to B$ a pro-G-Galois extension.

$$G_{\alpha} \longleftarrow G_{\beta} \longleftarrow \cdots \longleftarrow \lim G_{\alpha} =: G$$

Gabrielle Li (UIUC Graduate Student HomotcGalois Extensions in Stable Homotopy Theory

Examples

In classical Galois theory for fields, each closed subgroup (under the Krull topology) of the Galois group $\operatorname{Gal}(F/E)$ of field extension $E\subset F$ corresponds bijectively to the intermediate field that is fixed by the group, and the finite extension corresponds to the open subgroups of $\operatorname{Gal}(F/E)$. Furthermore, $\operatorname{Gal}(F/E)$ acts continuously on \bar{F} with the discrete topology, so \bar{F} is the union of \bar{F}^U over all the open subgroups U.

Examples:
$$L_{K(n)} \mathbb{S} = E_n^{h \mathbb{G}_n}$$

For a closed subgroup $K \subset \mathbb{G}_n$ and an appropriate filtration of normal open subgroup $\{U_i\} \subset K$, Devinatz and Hopkons define

$$E_n^{dhK} := L_{K(n)}(\operatorname{colim}_i U_n^{hU_iK}).$$

They showed that the definition is independent from the choice of $\{U_i\}$ and that it behaves like a continuous homotopy fixed point:

- **①** For a finite subgroup $K \subset \mathbb{G}_n$, this construction of E_n^{dhK} agrees with $F(EK_+, E_n)^K$.
- 2 There is a spectral sequence

$$E_2^{p,q} = H_{cts}^p(K, \pi_q(E_n)) \Rightarrow \pi_{q-p}(E_n^{dhK})$$

3 E_n^{dhK} has a residual action by W(K).

→ロト 4回ト 4 三ト 4 三ト 9 Q (*)

Theorem (5.4.4 Devinatz-Hopkins)

- For each pair of closed subgroups $H \subset K \subset \mathbb{G}_n$ with H a normal subgroup of finite index in K, the map $E_n^{hK} \to E_n^{hH}$ is a K(n)-local K/H-Galois extension. In particular, for each finite subgroup $K \in \mathbb{G}_n$, the map $E_n^{hK} \to E_n$ is a K(n)-local K-Galois extension.
- **2** Likewise, for each open normal subgroup $U \subset \mathbb{G}_n$, the map

$$L_{K(n)}S = E_n^{h \mathbb{G}_n} \to E_n^U$$

is a K(n)-local \mathbb{G}_n/U -Galois extension.

3 A choice of descending sequence $\{U_i\}$ of open normal subgroups of \mathbb{G}_n with $\bigcap_i U_i = \{e\}$ exhibits

$$L_{K(n)}S = E_n^{h \mathbb{G}_n} \to E_n$$

as a K(n)-local pro- \mathbb{G}_n -Galois extension.

(ロト 4回 ト 4 重 ト 4 重 ト) 重 | 夕久の

Examples: K(1)-local case

The height 1 Honda formal group law over \mathbb{F}_{p^n} is the multiplicative formal group law, and its universal deformation is the multiplicative formal group law over \mathbb{Z}_p . The Lubin–Tate spectrum E_1 equals the p-completed complex tological K-theory KU_p , and the Morava stabilzer group $\mathbb{G}_1 = \mathbb{S}_1$ is the group of p-adic units \mathbb{Z}_p^{\times} . An element $k \in \mathbb{Z}_p^{\times}$ acts on KU_p by the p-adic Adams operation

$$\psi^k: KU_p \to KU_p.$$

The homotopy fixed point spectrum

$$E_1^{h\,\mathbb{G}_n}=(KU_p)^{h\,\mathbb{Z}_p^\times}$$

is the p-complete image-of-J spectrum, defined as the fiber of

$$J_2 \to KO_2 \xrightarrow{\psi^3 - 1} KO_2$$

$$J_p \to KU_p \xrightarrow{\psi^r - 1} KU_p$$

for odd p and a topological generator r of \mathbb{Z}_p^{\times} .

Examples: K(1)-local case

Examples: K(1)-local case

$$F\Psi^{r^n} o KU_p \xrightarrow{\Psi^{r^n}-1} KU_p$$

(ロト 4回 ト 4 重 ト 4 重 ト) 重) 夕(で)

Recall that we have an adjunction

$$\mathbb{1}[-]: \mathsf{Sp}^{cn} \rightleftharpoons \mathrm{CAlg}(\mathcal{C}): (-)^{\times}$$

Definition (Roots of unity)

For a additive, presentably symmetric monoidal category C and $R \in CAlg(C)$, for $m \in \mathbb{N}$, we define the space of m-th roots of unity in R by

$$\mu_m(R) = \mathsf{Hom}_{\mathsf{Sp}^{cn}}(HC_m, R^{\times})$$

where C_m is the cyclic group of order m. By the adjunction above, this is correpresented by $\mathbb{1}[C_m]$, i. e.

$$\mu_m(R) = \operatorname{\mathsf{Hom}}_{\operatorname{CAlg}(\mathcal{C})}(\mathbb{1}[C_m], R).$$

4 11 1 4 4 12 1 4 12 1 1 2 1 9 9 9

We can generalize this construction when $\mathcal C$ is higher semiadditive.

Definition ((Higher) cyclotomic extension)

For a stable *n*-semiadditively symmetric monoidal category C, a prime p and $m \in \mathbb{N}$, we define the space of p-th roots of unity of heigh n in R by

$$\mu_{p^r}^n(R) = \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Sp}}^{cn}}(HC_{p^r}, \Omega^n R^{\times}).$$

Similarly, this is correpresented by $\mathbb{1}[B_m C_{p^r}]$, i.e.

$$\mu_{p'}^n(R) = \operatorname{\mathsf{Hom}}_{\operatorname{CAlg}(\mathcal{C})}(\mathbb{1}[C_{p'}], \Omega^n R) = \operatorname{\mathsf{Hom}}_{\operatorname{CAlg}(\mathcal{C})}(\mathbb{1}[B^n C_{p'}], R).$$

We also have a notion of primitive roots of unity.

Definition (Primitive roots of unity)

We say a higher root of unity $C_{p^r} \to \Omega^n R^{\times}$ is primitive, if R is of height n and there is no non-0 commutative R-algebra S that satisfy the commutative diagram

For $k \leq r$, we have an injective group homomorphism $C_{p^{r-k}} \hookrightarrow C_{p^r}$. By precomposition, we have

$$\mu^n_{p^r}(R) = \mathsf{Hom}_{\mathsf{Sp}^{cn}}(H\mathcal{C}_{p^r}, \Omega^n R^\times) \to \mathsf{Hom}_{\mathsf{Sp}^{cn}}(H\mathcal{C}_{p^{r-k}}, \Omega^n R^\times) = \mu^n_{p^{r-k}}(R).$$

We can think of this as raising a p^r -th roots of unity to the p^k -th power to get a p^{r-k} -th roots of unity.

For $k \leq r$, we have a surjective group homomorphism $C_{p^r} \twoheadrightarrow C_{p^k}$. By precomposition, we have

$$\mu^n_{p^k}(R) = \mathsf{Hom}_{\mathsf{Sp}^{cn}}(H\mathcal{C}_{p^k}, \Omega^n R^\times) \to \mathsf{Hom}_{\mathsf{Sp}^{cn}}(H\mathcal{C}_{p^r}, \Omega^n R^\times) = \mu^n_{p^r}(R).$$

We can think of this as the inclusion of p^k -th roots of unity into p^r -th roots of unity. The group homomorphism $q_n: C_{p^r} \twoheadrightarrow C_{p^k}$ induces a map

$$\overline{q_n}: \mathbb{1}\left[B^nC_{p^r}\right] \to \mathbb{1}\left[B^nC_{p^k}\right].$$

□▶ 4億▶ 4 毫▶ 4 毫 ▶ ■ 9 Q Q

In particular, let's take k = r - 1. The map

$$\overline{q_n}:\mathbb{1}\left[B^nC_{p^r}\right]\to \mathbb{1}\left[B^nC_{p^{r-1}}\right]$$

correpresents the inclusion of roots of unity. When $\mathcal C$ is n-semiadditive with semiadditively height n, there exists an idempotent element $\epsilon \in \pi_0(\mathbb{I}\left[B^n C_{p^r}\right])$ such that

$$\mathbb{1}[B^{n}C_{p^{r}}][\epsilon^{-1}] = \mathbb{1}[B^{n}C_{p^{r-1}}]$$

and the localization map is identified with $\overline{q_n}$.

Example (Chromatic cyclotomic extension)

For C is n-semiadditive with semiadditively height n, we define

$$\mathbb{1}[\omega_{p^r}^n] := \mathbb{1}[B^n C_{p^r}][(1-\epsilon)^{-1}], \quad R[\omega_{p^r}^n] := R \otimes \mathbb{1}[\omega_{p^r}^n]$$

for $R \in \mathrm{CAlg}(\mathcal{C})$. We call this the height n p^r -th cyclotomic extension of R, and it represents the primitive p^r -th roots of unity.

Proposition

It is a faithful Galois extension in $\operatorname{Sp}_{K(n)}$ and $\operatorname{Sp}_{K(n)}$ with Galois group $\mathbb{Z}/p^{r\times}$.

Application: Cyclotomic Completeness

We have a canonical map

$$\mathbb{1}\left[\omega_{p^{r-1}}^n\right] \to \mathbb{1}\left[\omega_{p^r}^n\right]$$

that corepresents the natural transformation $\omega \to \omega^p$ on primitive roots of unity. Now we take the direct limit of this system.

Definition (Infinite cyclotomic extension)

For C is n-semiadditive with semiadditively height n, we define

$$\mathbb{1}\left[\omega_{p^r}^{\infty}\right] := \lim_{r \in \mathbb{N}} \mathbb{1}\left[\omega_{p^r}^n\right]$$

By definition, this is a pro- $\mathbb{Z}/p^{r\times}$ -Galois extension. It's natural to question whether this is (possibly) a Galois extension, i.e. whether

$$1 \to 1 \left[\omega_{p'}^{\infty}\right]^{h\mathbb{Z}_p^{\times}}$$

is an equivalence. If this is true, we call $\mathcal C$ cyclotomic complete.

Application: Cyclotomic Completeness

Example $(Sp_{K(n)}$ is cyclotomically complete)

Let $C = \operatorname{Sp}_{K(n)}$, and we have a pro- \mathbb{Z}_p^{\times} extension

$$L_{K(n)}S^0 \to L_{K(n)}S^0[\omega_{p^r}^\infty].$$

By Devinatz and Hopkins, we have

$$L_{K(n)}S^0=E_n^{h\mathbb{G}_n}$$

and $\mathbb{Z}_p^{\times} \subset \mathbb{G}_n$, so for the intermediate extension we have

$$L_{K(n)}S^0 \cong L_{K(n)}S^0[\omega_{p^r}^{\infty}]^{h\mathbb{Z}_p^{\times}}.$$